Modern Era Clinical Trial Strategies for Cerebral Embolic Protection Devices

Alexandra Lansky, MD
Professor of Medicine
Yale School of Medicine, New Haven, CT

Disclosure of Relevant Financial Relationships

Within the prior 24 months, I have had a financial relationship with a company producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients:

Nature of Financial Relationship

Grant/Research Support

Consultant Fees/Honoraria

Ineligible Company

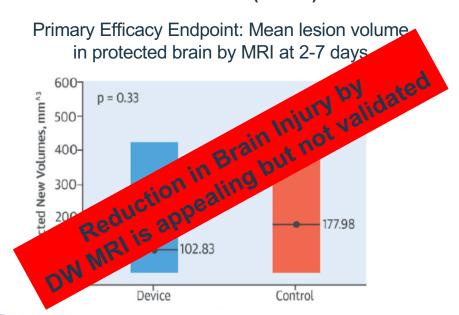
Abiomed, Abbott Vascular, Bard, Boston Scientific, Biocardia, Biotronik, Conformal, Emboline, Filterlex, Gore, Intact Vascular, Keystone Heart, Venus, Limflow, Microport, Myocardia, Reva, Sinomed, Shockwave, Surmodics, Veryan Medical

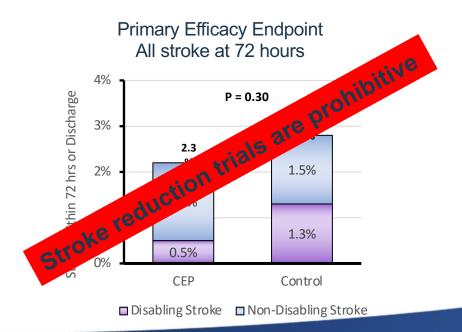
, ,

Boston Scientific

All financial relationships have been mitigated.

Faculty disclosure information can be found on the app




Challenges for Future CEP Trial Design Predicate has modest Effectiveness

SENTINEL IDE (N=435)

PROTECTED TAVR (N=3000)

Predicate 510K vs Denovo 510K RCT vs CEP or no CEP or SC

Safety: Non-Inferiority

- Combined Safety and Efficacy
 - MACE defined as Death, Stroke, AKI stage 2-3

Efficacy: Superiority vs Non-inferiority

- Efficacy:
 - Stroke
 - All AKI
 - Systemic embolization
 - CNS Injury imaging (DW MRI surrogate?)

Trial Design for CEP Capture Devices

Emblok[™]
Clinical studies

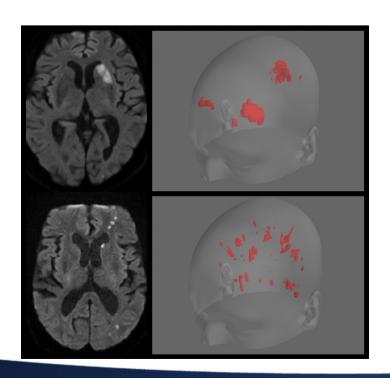
- 100µm
- Femoral
- 11F
- 3 vessel capture
- Non-Inferiority

EmbolinerTM
Clinical studies

- 150µm
- Femoral
- 10F
- 3 vessel+ body capture
- Non-Inferiority

CAPTIS[™] Preclinical

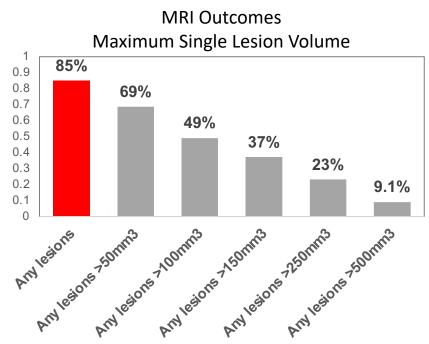
- 115x145μm
- Femoral
- 16F
- 3 vessel + body capture
- Superiority



ProtEmbo® FIH completed

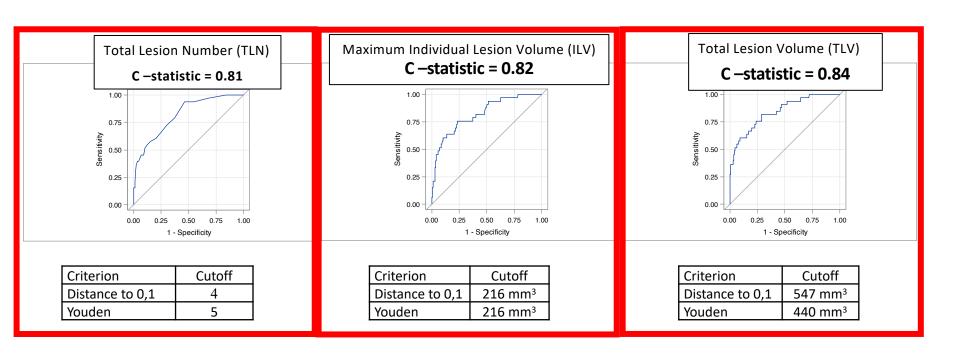
- 60μm pore
- L-radial
- 6F
- Covers all 3 vessels
- Superiority

Can DW MRI discriminate stroke after TAVR? What DW MRI measure is most reliable?

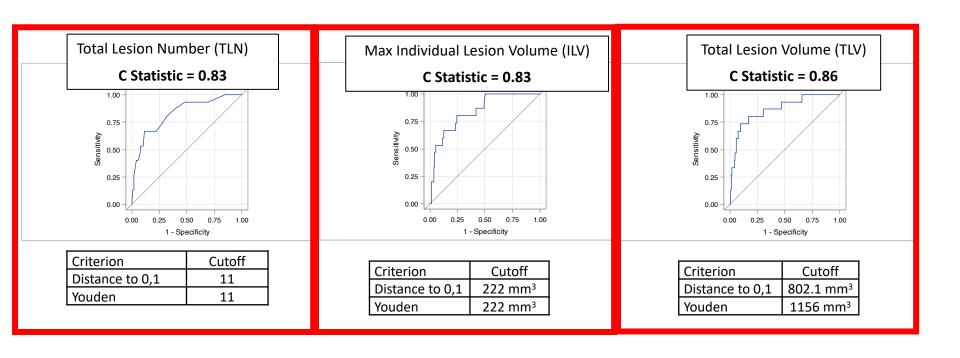

Count: 7 discrete lesions ILV or Max ILV TLV= 6558.6 mm³ Acute stroke Change in NIHSS: 11 Stroke Disability

Count: 51 discrete lesions ILV or Max ILV TLV= 5681 mm³ Acute stroke Change in NIHSS: 3 Stroke Recovery

Patient Level Pooled analysis (N=479) Same Methods, DWI imaging, Core Lab, CEC, Neurologic evaluation


Neurologic Outcomes	Total	
	479	
Fatal or Ischemic Stroke, no (%)	36 (7.5)	
Ischemic Stroke, no (%)	33 (6.9)	
Fatal or Disabling stroke, no (%)	15 (3.1)	
Fatal stroke	0 (0.0)	
Disabling stroke	15 (3.1)	
Non-disabling stroke	17 (3.6)	
Stroke recovery, No (%)	26 (6.6)	
Complete	16 (4.1)	
Incomplete	10 (2.5)	
TIA, no (%)	4 (0.8)	
Stroke or TIA, no (%)	37 (7.7)	
Delirium, no (%)	4 (1.0)	
Death (all-cause), no (%)	4 (0.8)	

100% of patients with stroke, 84% of patients without stroke

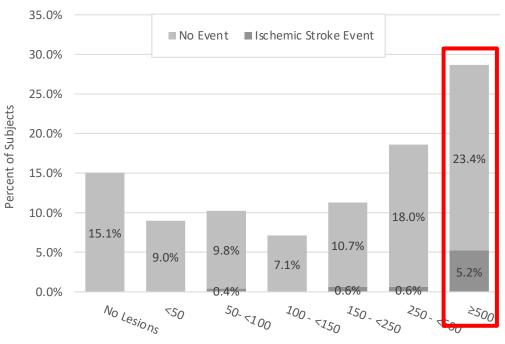

Ischemic Stroke at 30 days

AUC-ROC of DW-MRI Lesions to predict Ischemic Stroke

Disabling Stroke at 30 days

AUC ROC of DW-MRI Lesions to Predict Ischemic Stroke

Outcomes based on TLV threshold


	TLV>500	TLV<=500	
	(N=137)	(N=342)	P-value
Fatal or Ischemic Stroke, no (%)	26 (19.0)	10 (2.9)	<.0001
Stroke, no (%)	25 (18.2)	8 (2.3)	<.0001
Ischemic	25 (18.2)	8 (2.3)	<.0001
Hemorrhagic	0 (0.0)	0 (0.0)	
Fatal or Disabling stroke, no (%)	12 (8.8)	3 (0.9)	<.0001
Fatal stroke	0 (0.0)	0 (0.0)	
Disabling stroke	12 (8.8)	3 (0.9)	<.0001
Non-disabling stroke	12 (8.8)	5 (1.5)	0.0003
Stroke recovery, No (%)	19/25 (76)	7/8 (87.5)	<.0001
Complete	11 (44)	5 (62)	0.0008
Incomplete	8 (32)	2 (25)	0.001
Stroke or TIA, no (%)	25 (18.2)	12 (3.5)	<.0001
Delirium, no (%)	0 (0.0)	4 (1.4)	0.581
Cardiovascular Death, no (%)	2 (1.5)	2 (0.6)	0.3235
Myocardial infarction, no (%)	3 (2.2)	5 (1.5)	0.6946
Myocardial infarction, no (%) Any Acute Kidney Injury, no (%)	3 (2.2) 6 (4.4)	5 (1.5) 10 (2.9)	0.6946 0.4086
		` '	
Any Acute Kidney Injury, no (%)	6 (4.4)	10 (2.9)	0.4086

TLV>500mm³ is

- ➤ Highly associate with ischemic stroke (76% of all strokes)
- ➤ Highly associated with disabling stroke (80% of disabling strokes)
- Less stroke recovery
- Less complete recovery

TLV Thresholds and Ischemic Stroke Rates

TLV \geq 500 is common (29% of patients)

Total Lesion Volume (TLV), mm3

CEP trial strategies

- Currently many approaches for approval- no right or wrong
 - RCT designs
 - Controls can be Sentinel (NI) OR no CEP (Sup) or SOC (sup)
 - Until one device shows benefit over Sentinel

- Sentinel is the current predicate: easy to use and safe
 - Need to show benefit- if not in the IDE trial then in post market
- Brain imaging is a good surrogate to discriminate stroke
 - Best measure is TLV